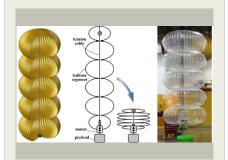
Small Business Innovation Research/Small Business Tech Transfer

Adaptable Multi-Segment Altitude Control (AM-SAC) Balloon for Planetary Exploration, Phase I

Completed Technology Project (2016 - 2016)


Project Introduction

Thin Red Line USA (TRL-USA) proposes a unique, multi-segment balloon with low-power, rapid mobility altitude control cycling capability that is applicable to both Venus and Titan atmospheric exploration missions as well as other planetary bodies. The innovation creates a single architecture that allows reliable, low power, virtually unlimited altitude cycling capability; overcoming the pitfalls of all other known options for lighter-than-atmosphere exploration at both Venus and Titan. The Phase I effort lays a strong foundation for a Phase II effort that will include the construction and demonstration of an atscale system using materials suitable for a Venus or Titan mission. The proposed innovation and following Phase II work can, in just 2 years, enable a viable Venus or Titan exploration mission with a low risk LTA system.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Thin Red Line USA, dba of MKF Interests, LLC	Lead Organization	Industry	Houston, Texas
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Adaptable Multi-Segment Altitude Control (AM-SAC) Balloon for Planetary Exploration, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Adaptable Multi-Segment Altitude Control (AM-SAC) Balloon for Planetary Exploration, Phase I

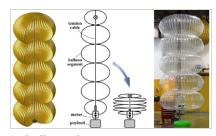
Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations	
California	Texas

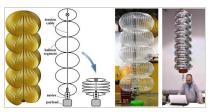
Project Transitions

0

June 2016: Project Start



December 2016: Closed out


Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139656)

Images

Briefing Chart Image
Adaptable Multi-Segment Altitude
Control (AM-SAC) Balloon for
Planetary Exploration, Phase I
(https://techport.nasa.gov/imag
e/136049)

Final Summary Chart Image
Adaptable Multi-Segment Altitude
Control (AM-SAC) Balloon for
Planetary Exploration, Phase I
Project Image
(https://techport.nasa.gov/imag
e/127925)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Thin Red Line USA, dba of MKF Interests, LLC

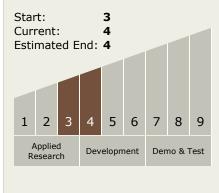
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Brian Aiken

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Adaptable Multi-Segment Altitude Control (AM-SAC) Balloon for Planetary Exploration, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

